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Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig
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We combined the Maxwell-Garnett effective medium theory with the Kramers-Kronig relations to obtain the
complex dielectric function € of colloidal PbS, PbSe, and PbTe quantum dots (Qdots). The method allows
extracting both real (eg) and imaginary (e;) parts of the dielectric function from the experimental absorption
spectrum. This enables the quantification of the size-dependent oscillator strength of the optical transitions at
different critical points in the Brillouin zone, strongly improving our understanding of quantum confinement
effects in these materials. In addition, the static-limit sum rule yields the electronic dielectric constant from the
€; spectrum. Interestingly, values for lead chalcogenide Qdots remain close to the bulk dielectric constant. To
verify these trends, we determined the dielectric constant of thin lead chalcogenide layers by ab initio calcu-

lations, and the results agree with the experimental data.
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I. INTRODUCTION

Photonic device development and the optimization of de-
vice efficiency is an important aspect of current research on
colloidal quantum dots (Qdots). In this respect, the complex
dielectric function e=e€R+i-€; of colloidal quantum dots
(Qdots) is an important materials property. For instance, €
has already been used in the determination of the quantum
efficiency of PbSe Qdot solar cells.! With the recent demon-
stration of colloidal Qdot-based lasing,>> € will also become
a key parameter in the future design of these lasers, as the
Qdot refractive index will contribute to the effective index of
the lasing cavity. More generally, understanding the optical
properties of a composite material consisting of several Qdot
materials and/or sizes will also benefit greatly from the
knowledge of € of their constituents. Fabrication of such
structures has already been intensely investigated, for in-
stance, as randomly mixed thin films,* ordered layers of al-
ternating materials,® or as superlattices consisting of two dif-
ferent materials.®” These composites may find wide spread
application. For instance, in the case of a structure composed
of different Qdots, energy transfer (ET) from one to the other
material is often employed to enhance the luminescence
properties of the devices.*> Improvement of the device effi-
ciency includes optimization of the ET, which depends on
the molar extinction coefficient of the acceptor material® and
hence on € due to dielectric confinement.”!” An as yet unex-
plored potential lies in the application of such composites as
negative index metamaterials. Modeling has already shown
that the optical properties of such a device strongly depend
on the € of both constituents at frequencies that correspond
to transitions close to the band gap.!! However, experimental
verification is still lacking.

On a more fundamental level, insight in the effects of
quantum confinement on the optical properties of Qdots can
be improved if € can be determined over the entire spectral
range. Experimental data can then be compared to theory,
which is mostly focused on understanding the size depen-
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dence of the electronic dielectric constant €. €, is often de-
scribed within the generalized Penn Model,'? which states
that €, strongly decreases with decreasing size, due to an
opening of the band gap for smaller Qdots (quantum confine-
ment). However, recent reports have cast doubt on the valid-
ity of the Penn model, proposing that the size dependence
arises from a reduction in €, near the Qdot surface while it
remains bulklike in the inner Qdot volume.'>!'* This implies
that €y merely becomes smaller due to a decreasing Qdot size
(increasing the relative surface area).

Considering its importance, surprisingly few experimental
reports on € for colloidal Qdots exist in literature. Data are
mainly collected using spectroscopic ellipsometry and results
are reported for II-VI [ZnTe,'> CdTe,'® and HgTe (Ref. 17)],
IV-VI [PbSe (Refs. 1 and 18)], and group IV Qdots [Si,'*2°
Ge (Ref. 21)]. However, a systematic comparison of different
materials and Qdot sizes is at present lacking. In this paper,
we address this issue by calculating € for colloidal PbS,
PbSe, and PbTe Qdots using a method that we have devel-
oped recently. It is based on a Kramers-Kronig (KK) analysis
of the Qdot absorption coefficient w. Our calculation starts
from the Qdot absorbance spectrum, which is typically ac-
quired over a spectral range going from UV to wavelengths
far beyond the absorption onset. Therefore, we can analyze ¢
both around the band gap and at higher lying optical transi-
tions. In addition, the electronic dielectric constant €, can be
derived from ¢; by the static-limit sum rule. Results are com-
pared to density-functional calculations, which demonstrate
that the generalized Penn model need not be invoked to in-
terpret €.

II. DISCRETE KRAMERS-KRONIG RELATIONS

Optical constants of bulk materials can be determined
from a KK analysis of the bulk absorption coefficient a.. The
extinction coefficient k is directly related to «, and if k can
be determined over a wide enough spectral range, the refrac-
tive index n can be calculated. From these values, € and ¢
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can be determined. However, u of colloidal Qdots is given
by the Maxwell-Garnett (MG) effective medium theory,??
which implies that p at a given wavelength A is determined
by both real and imaginary parts of € (n,: solvent refractive
index)

27'r|f B 27 9nf (1)
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The local field factor f; clearly influences the Qdot ab-
sorption (dielectric confinement®!°). Although this hampers a
straightforward KK analysis, we can still obtain € by an it-
erative procedure.

Let us take the following KK relation as a starting point,
which yields € at a given frequency w from an integration
of € over the entire frequency domain (P: Cauchy principal
value)

2 oo ! ’
erlw)=1+ —’Pf %(wzdw’. (2)
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It is clear that if, for instance, €; is known over the entire
frequency domain, €z can be calculated. A practical Qdot
absorbance spectrum is, however, typically measured over a
wavelength range, not a frequency range, and it is deter-
mined at discrete, equidistant wavelengths A, instead of over
a continuous range. Using w-A=2m-c, with ¢ the speed of
light, we can transform Eq. (2) into the wavelength domain.
In addition, we rewrite the KK relation in a discrete form

2 AAN
ER()\I) = 1 + E

;k#/ )\k()\f _ )\/%) e(\p). (3)

We take the spacing AN much smaller than the spectral fea-
tures in the absorbance spectrum, allowing for an adequate
sampling of the data. The summation runs from k=0 to o,
omitting k=j, hereby avoiding infinite values. This is equiva-
lent to using the Cauchy principal value in the continuous
KK relation. Considering that X\ =j(k)-AN, we can sim-
plify this equation
2
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Finally, we will use a more convenient matrix formalism,
writing €, and €; as column vectors. In addition, in accor-
dance with the work of Adachi et al., we replace 1 by e,
[equal to 1.5 for PbSe (Ref. 23) and 1.7 for PbS (Ref. 24)
and PbTe (Ref. 25)]. This accounts for higher lying transi-
tions not observed in the experimental e;.

€Eg=€,+—A- €
T

with
7
Aj’k:k(jZ_kz)’ AJ’JzO (5)
To demonstrate that the discretization is valid, Fig. 1(a)
shows ¢ for a virtual material, exhibiting two Lorentz peaks
(denoted the TLP particle), plotted on a wavelength scale.
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FIG. 1. (Color online) (a) Imaginary part of the dielectric func-
tion of the TLP particle. The full line shows the continuous data, the
circles represent ¢€; evaluated at 500 discrete wavelengths. (b) Real
part of the dielectric function, calculated from the continuous KK
relations (2, full line) and the discrete KK relations (5, O). The
agreement shows that the discrete KK relations are valid, even
when taking the summation over a finite wavelength interval.

On top of the continuous data, we show the discrete data
(500 data points are used). The continuous data are trans-
formed using Eq. (2), the discrete data using Eq. (5), albeit
that we now consider a sum over the finite wavelength range
shown in Fig. 1. As € coincides for both calculations [Fig.
1(b)], we can conclude that the discrete KK transformation
indeed provides an accurate method to calculate €. In addi-
tion, we show that the infinite sum can be replaced by a finite
one, at least when extending the wavelength range well into
the transparent region (&,=0).

III. CALCULATION OF THE QDOT DIELECTRIC
FUNCTION

A. Method

Returning to the expression in Eq. (1) for u and keeping
in mind that this equation is valid at any given \;, we see
that the calculation of ¢ at N given wavelengths requires
solving 2N equations [Egs. (1) and (5)], N of which are
quadratic in € and ¢, Instead of attempting a direct calcu-
lation, we develop an iterative approach to solve the prob-
lem. Starting from a trial function €, we calculate € us-
ing Eq. (5). Both then yield an initial estimate u, from Eq.
(1) (obviously, ug# w). We now define Ae; and Aeg as the
difference between the trial function and the true values: ¢;
=€ 0+A€;, eg=€po+Aeg. After substitution in Eq. (1), a
first-order Taylor series expansion yields (using the matrix
notation)
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FIG. 2. Schematic representation of the iterative matrix inver-
sion method. KK: Kramers-Kronig transformation, MG: calculation
of w within the Maxwell-Garnett model, and MI: matrix inversion.
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Cj,k=Dj,k=0‘ (6)

This equation, although only correct up to first order, is
linear in Ae; and Aeg. Just as for €, the change Ae must obey
KK relation: Aeg=(2/m)AA€ with A already defined in Eq.
(5). Hence, combining this equation with Eq. (6), we can
calculate A€y by following matrix inversion:

Ae;=[C+ (2/m)DA]'M. (7)

As already stated, due to the linearization, the corrected
trial function €, ;=€ o+ A¢; does not yet lead to an absorption
coefficient u; equal to u. However, by iterating the proce-
dure outlined above, the absorption coefficient calculated at
each step u; will converge to w. The iteration is halted once
the root-mean-square error y is reduced to values below
107°. This iterative matrix inversion (IMI) method is sum-
marized in Fig. 2.

To illustrate this approach, we first extract the dielectric
function of the TLP particle from its w spectrum (Fig. 3). We
start from a trial function € consisting of three peaks. u is
calculated from ¢; and €, assuming that the particle is sus-
pended in vacuum (i.e., with a constant refractive index n;
=1). To enable a practical IMI calculation, the infinite wave-
length range is replaced by a finite one, extending from A
=0 well into the transparency region of the material, again
using 500 discrete points. As shown in Fig. 3(d), the root-
mean-square error y rapidly decreases and the IMI procedure
already yields the correct dielectric function after only five
iterations. Figures 3(e) and 3(f) show the evolution of the
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FIG. 3. (Color online) Illustration of the IMI procedure. The full
line represents (a) the absorption coefficient, (b) imaginary, and (c)
real parts of the dielectric function of the TLP particle. Starting
from a trial function €, (@) exhibiting three peaks, the IMI proce-
dure rapidly yields the correct values for the dielectric function (O).
(d) Only five iteration steps are needed to bring the error x below
107°. (e) Imaginary and (f) real parts of the dielectric function for
the subsequent steps of the iterative procedure.

dielectric function at different iteration steps. The procedure
is slightly modified. In this case, Ag¢; is divided by two after
each step to slow down the convergence and provide a more
detailed view of the optimization process. The figure clearly
shows how the spurious middle peak is removed and how the
left and the right peaks rapidly converge toward the correct
value.

B. Results

First, in order to calculate the Qdot €, we need its u
spectrum. We start by measuring the absorbance spectrum of
a Qdot suspension (PbSe Qdots are suspended in CCly, PbS,
and PbTe Qdots are suspended in C,Cly). For PbS (Ref. 26)
and PbSe (Ref. 27) Qdots, we have observed that u is bulk-
like from 3.1 eV (400 nm) on. Therefore, the Qdot u spec-
trum is obtained by normalizing the experimental Qdot ab-
sorbance at 400 nm to its bulk value, using a known n,.?8 The
respective bulk values used are: up,g=1.71X10> cm™,
Mpbse=2.03X10° cm™, and pupyr.=4.49X10° cm™!. Sec-
ond, the high-energy transitions (in the visible and near UV,
the E2 and the E3 transitions along the A direction in the
Brillouin zone) in lead chalcogenide Qdots are essentially
bulklike,? which already suggests that € values for the Qdots
are identical to bulk values. Hence, we assume that € gqo
=€/ pux 10 the range 0-400 nm. In the wavelength range
0-230 nm, where no experimental data are available for
€/ bulks We use values from the fitted model, as described by
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FIG. 4. (Color online) (a) Experimental € (@) (Ref. 30) and the
result of the IMI calculation (full line) for bulk PbS. The initial trial
function € is indicated by a dotted line. [(b)-(d)] Real and imagi-
nary parts of € of typical (b) PbS, (c) PbSe, and (d) PbTe Qdots.

Adachi et al.>*? The equality implies that we can limit the
IMI calculation to wavelengths above 400 nm, reducing the
calculation time. Finally, for both the IMI calculation and the
KK relation, we can set the upper wavelength limit to 3000
nm, well into the transparency region of the Qdot suspen-
sions, as here € no longer contributes to € [Eq. (5), €=0].

Before extracting the € of lead salt Qdots from their re-
spective u spectra, we verify the validity of the IMI method
on a more realistic system. We start from the u spectrum of
hypothetical spherical particles with bulk PbS optical
constants.’® u is determined from Eq. (1), using the C,Cl,
solvent refractive index?® and an interpolation of € of PbS
(Ref. 30) with AN=8 nm. Figure 4(a) shows the trial func-
tion € (dotted line) together with the resulting calculated
spectra (full line, calculations are performed as outlined
above, in a wavelength range of 400-4000 nm and using the
bulk ¢ in the range 0—400 nm). Our results agree well with
the experimental data (dots). Note that, as the experimental
€ and ¢; are obtained independently from each other, their
values are not required to uphold the KK relations while our
calculated result must obey the KK relations by definition.
An exact match of both data sets is therefore not to be ex-
pected, and we can conclude that the IMI method yields an
accurate dielectric function.

Despite these results, a possible pitfall of our technique is
the potential occurrence of a (nearly) singular matrix, which
yields numerical instabilities upon inversion. This might be
due to a near zero value of the coefficients C;; or D; ;

S B T ©
j’j_el (6R+2nf)2+€12’

2(eg + 2nf) ©)

W (g+2n))+ €
We indeed observe that C;; equals zero when e?: (eg
+2n§)2 and D; ; equals zero when 6R=—2nf. Fortunately, for
lead chalcogenide materials, this mainly occurs in the wave-
length region 0-300 nm. As we use bulk values for ¢ in this
spectral region, and the IMI calculation is restricted to wave-
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FIG. 5. (Color online) (a) Comparison of u and ¢ for typical
PbSe Qdots. Inset: difference & (meV) between the spectral posi-
tions of u and €. [(b)—(d)] ¢ for three Qdot sizes (full lines) super-
imposed on bulk data (dots) in the case of (b) PbS, (c) PbSe, (d) and
PbTe Qdots. The expansion of Qdot €; by bulk values (0-400 nm) is
indicated by a gray zone.

lengths above 400 nm, a singular matrix can therefore be
avoided. However, to some extent numerical instabilities
may persist in our calculations. Therefore, the maximal Aeg,
value is calculated in each iteration, and if necessary, Ae; is
reduced to maintain convergence. This does not hamper the
convergence, it merely slows it down.

Proceeding with the determination of the Qdot €, Fig. 4
shows the results of an IMI calculation for typical lead chal-
cogenide Qdots (typical meaning here that the sizes range
from 3 to 10 nm and the size dispersion is below 10%). All €
spectra are calculated starting from a trial function equal to
the € of their respective bulk material.*® Clearly, in contrast
with the absorbance spectrum, where optical transitions in
the visible are cloaked by a strongly rising f; 2 all optical
transitions are readily distinguished in the spectra of €. In
addition, € spectra now also provide further insight into the
Qdot optical properties. We observe strong antiresonances
around the exciton transitions, demonstrating a strong modu-
lation of € due to the sharp Qdot absorption peaks. Com-
paring the PbSe Qdot spectrum to recently published data
using ellipsometry,! we observe an improved signal-to-noise
ratio around the band gap. This demonstrates that the IMI
method is a powerful technique, enabling the quantification
of the optical properties of colloidal Qdot suspensions and
thin films over the entire spectral range.

Figure 5(a) compares €; with w at the band gap of PbSe
Qdots. We clearly observe a slight (4-21 meV) redshift of
the band-gap transition for the €; spectrum, which is due to
the removal of f; . This agrees with pseudopotential calcu-
lations on InAs Qdots,>' and consequently, for an in-depth
comparison between experiment and theory, either f;p
should be included in the calculations'* or removed from
experimental data. However, given the small shift observed,
in practical calculations this effect might be neglected.

Figures 5(b)-5(d) show the full ¢ spectrum of three typi-
cal Qdots of varying size d (full lines) superimposed on their
respective bulk spectrum (dots).?>=?> First, from the € spec-
tra, we can calculate the oscillator strength f; per particle of
the band-gap transition (f sum rule)

235319-4



DIELECTRIC FUNCTION OF COLLOIDAL LEAD...

(@)p5 E oy o0 (b)40; oo
20 ;D & 80 ° E* °© DDD
E o E
F om E
‘4515? ggc 0?3(); '.IIDD ©
- &o E
125 ° 20 MegPERo ©
3 E ®e o "m0 o
0 Bttt 10 Bl o899,
0 2 4 6 8 02 04 06 0.8 1.0 1.2

Size (nm) Band gap (eV)

FIG. 6. (Color online) (a) f;, calculated from ¢; ((), agrees well
with previous calculations starting from u (O). (b) We observe no
size dependence for the experimental values of €, shown by open
symbols for PbS (O), PbSe (<), and PbTe ([J) Qdots. Experimental
results agree with DFT calculations on lead chalcogenide quantum
wells (closed symbols). Furthermore, the average Qdot value is
close to the respective bulk value (Ref. 34) (dotted line).

2egm, mwd®

fif: w6

we(w)dw. (10)
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We integrate €; over the first absorption peak. Rewritten in a
discrete version and assuming a small peak width, this yields

Eom 32
= ——d°F, 11
flf Shz E ( )

Practically, in accordance with a calculation of f; from the
absorbance spectrum,’®?’ we take the sum over the long
wavelength half of the peak, and multiply the result by two.
For PbSe Qdots, fif calculated from ¢; is compared with pre-
viously published values®’ in Fig. 6(a). The agreement be-
tween both data sets again demonstrates that the IMI method
provides accurate data and proves that our previous assump-
tion, that f,-f can be calculated using the bulk e, holds for
lead chalcogenide Qdots.

Focusing now on the E1 and the E2 transitions in the
visible spectral region, we observe that the oscillator strength
and spectral position of the E2 transition show no significant
confinement effects. The Qdot E2 resonances are comparable
to bulk for all three materials. This was already suggested by
the bulklike nature of u in this spectral region. A slight in-
crease and redshift is observed for the smaller PbSe Qdots
[Fig. 5(b)], but this might be due to the merging of the E1
and the E2 transitions. In contrast, we observe strong quan-
tum confinement effects in all three lead chalcogenide Qdots
for the E1 transition. In the case of PbS Qdots, the transition
shifts to shorter wavelengths with decreasing Qdot size. In
the case of PbSe Qdots, the blueshift is accompanied by an
increase in the oscillator strength of the E1 transition with
respect to the E2 transition. This effect is even more pro-
nounced for PbTe Qdots. The results presented here confirm
previous experimental and theoretical data on € of 2D PbSe
Qdots, electrodeposited on gold surfaces, where a blueshift
and relative increase in the E1 transition with decreasing
Qdot height has also been observed,'® and recently published
results of Koole et al.,** who reported a blueshift of the E1
transition. The origin of the different behavior of the E1 and
the E2 transitions can be found in the lead chalcogenide band
structure: E1 and E2 arise from optical transitions at two
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different k points in the Brillouin zone, at saddle points char-
acterized by different positive or negative effective masses.>3

C. Dielectric constant

The electronic dielectric constant €, is defined as the real
part of € at energies far below the band-gap transition. It can
be calculated from €; using the static-limit sum rule (discrete
version)

N

€= €t — ZEI (12)
7Tk 1 k

Figure 6(b) shows the results for PbS, PbSe, and PbTe
Qdots, plotted as a function of their respective band-gap en-
ergy (open symbols). Interestingly, we observe no significant
size dependence. Averaged over all samples, we find: € pys
=145+ 1.8, € ppse=21.0*+2.5, and € pyre=35.4+5.4. The
average values are close to the respective bulk values of
17.15 (PbS), 22.85 (PbSe), and 32.8 (PbTe).* These results
are somewhat surprising. Comparable experimental data are
scarce,?0 but theoretical studies on € of silicon Qdots show
that €, decreases with decreasing particle size, either due to
the opening of the band gap (generalized Penn model)'? or
by a strong decrease in €, near the Qdot surface (rendering
the averaged ¢, size dependent).'>!# In contrast, for lead
chalcogenide Qdots we find values in reasonable agreement
with bulk data.

In order to study the effect of quantum confinement on the
dielectric constant of lead chalcogenides, we performed ab
initio calculations on slabs in the (001) orientation. The
thickness ranges from three layers to 15 layers. The slabs are
organized in a periodic supercell, the size of which is such
that adjacent slabs are separated by a vacuum with a width of
12 atomic layers. To calculate the electronic ground state of
the slabs, we use density-functional theory (DFT) in the
generalized-gradient approximation as implemented in the
code QUANTUM ESPRESSO.* Wave functions are expanded in
plane waves with an energy cutoff at 40 Ry and the first
Brillouin zone is sampled by a 16 X 16 X 1 k-point mesh. The
effect of core electrons (including the 5d electrons of lead) is
represented by Vanderbilt ultrasoft pseudopotentials. For the
calculation of the dielectric constant, €,, we follow a strategy
recently employed by Nakamura et al® for ultrathin Si
films. Starting point is the calculation of the total electro-
static potential of the slab, averaged over the parallel direc-
tions, in the presence of a homogeneous external electric
field perpendicular to the slab [Fig. 7(a)]. This field is simu-
lated by a saw-tooth potential, where the kinks in the slope
fall in the vacuum region far away from the slab [dashed line
in Fig. 7(b)]. Since the applied electric field (10™* a.u.) is
relatively weak, the distortion of the total potential is hardly
visible in Fig. 7(a). However, if we regard the antisymmetric
part of the total potential, U,,(z)=[v,(2)—v,(—2)]/2, the
effect of the electric field is clearly observed [Fig. 7(b)]: the
saw-tooth potential polarizes the slab, resulting in a reduc-
tion in the electric field (i.e., the slope of the potential) E™ in
the interior of the slab, and an enhancement of the exterior
field E®*. The average dielectric constant is calculated as the
ratio of external and (average) internal fields
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FIG. 7. (Color online) Calculation of the local dielectric con-
stant, €(z), of a PbSe slab with 15 layers. (a) Total potential, aver-
aged over the x-y plane. (b) Antisymmetric part of the total poten-
tial (solid line), induced by the saw-tooth potential (dashed line). (c)
Local electric field. (d) Local dielectric constant (averaged over the
x-y plane). Vertical bars in panels (a) and (d) mark the positions of
the atomic planes.
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It is also instructive to regard the variation in the field on
a local scale: E™(z)=db,,,/dz is displayed in Fig. 7(c). In
order to smooth out effects of subatomic variations in the
electron density, we have averaged the electric field over the
width of an atomic plane. The “local dielectric constant,”
€(z)=E'/E™, is displayed in Fig. 7(d). Similar to the case
of silicon slabs,'33¢ &(z) converges quickly to an almost con-
stant value within four layers from the surface, which con-
firms that the opening of the band gap induced by the con-
finement does not influence the dielectric response.'> The
enhancement of the local dielectric constant at the surface
layers (present in all the calculations of slabs of different
width) is probably due to some surface states. Furthermore,
we note that for slabs with more than nine layers, € is close
to the value €(z) in the middle of the slab.
In an alternative calculation of the dielectric function of
the slabs, we employed density-functional perturbation
theory?” as implemented in QUANTUM ESPRESSO. We use the

(13)
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same slab geometries with n,=3,...,15 layers as described
above. Here, a separation by n,=8 layers of vacuum is suf-
ficient. The code yields the average dielectric function, € of
the unit cell, which has a component parallel to the slab
layers, €, and perpendicular to the slab layers, €,. We define
the parallel component of the dielectric function in the slab,
€, in such a way that the effective medium value of the
dielectric function coincides with the average dielectric func-
tion

E” = (l’lsf:‘” + nvevac)/(ns + nv) . (14)

Similarly, the perpendicular component €, is defined by
ng+n, ng n,

=—+
€ € €vac

(15)

The dielectric function of vacuum €,,. is equal to one.

The results of the calculation are shown in Table I. We
observe that both the parallel and the perpendicular compo-
nents of the dielectric function in the slab converge very
quickly toward a value slightly above the calculated®® bulk
value of €,,;;=21.03. The fact that ¢ in the layers is larger
than the bulk value is due to the strong enhancement of the
local dielectric function at the surface [Fig. 7(d)] and has not
been observed for silicon slabs.!>143 This difference may be
explained by the efficient passivation of the silicon surfaces
by hydrogen!!#3¢ while, for lead chalcogenide materials,
there are surface states resonant in the bands®** which can
induce local enhancement of the dielectric response.

Our calculations have been performed on slabs. However,
since the effect of quantum confinement on both the parallel
and the perpendicular components of ¢, is basically absent,
we expect our result to hold as well for quantum wires and
quantum dots where DFT calculations become quickly un-
feasible. For this reason, we compare in Fig. 6(b) the values
measured on quantum dots (open symbols) with the calcula-
tions on slabs (closed symbols). With increasing band gap,
the theoretical €, slightly decreases, yet remains close to the
respective bulk value. For PbS and PbSe Qdots, the calcu-
lated €, agrees well with experimental data. For PbTe, the
calculations systematically underestimate €, due to short-
comings in the description of the electronic bands.? Never-
theless, for the materials studied here our DFT calculations

TABLE 1. DFT band gaps and dielectric constants, calculated with DFPT and with the electric-field
methods (last column) for different PbSe slabs; n, denotes the number of layers in the slab. Equations (14)
and (15) are used to convert the parallel/perpendicular components of € to the ones of e.

Eg
ng (eV) € €, € €1 e
0.838 6.77 1.35 22.15 23.59 18.77
0.778 8.91 1.58 21.56 21.97 19.37
0.656 10.52 1.80 21.39 21.50 20.03
0.580 11.76 2.02 21.32 21.36 20.00
11 0.536 12.74 2.23 21.28 21.34 20.26
13 0.508 13.55 2.44 21.27 21.29 20.56
15 0.489 14.20 2.64 21.24 21.23 20.56
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clearly show that ¢, is hardly influenced by the opening of
the band gap. Quantum confinement leads to an increase in
the minimum energy for electron-hole pairs and thus one
might think that it should lead to a reduced dielectric con-
stant. However, the average energy for electron-hole pair
transitions remains almost constant down to very thin slabs
and thus also the dielectric constant remains almost
unchanged.'3

IV. CONCLUSIONS

The results presented here provide a major step forward in
the understanding of the Qdot optical properties, as until
now, it has been difficult to access e experimentally, espe-
cially at energies around the band gap. We have shown here
that the IMI method enables the determination of € over the
entire spectral range of interest, enabling a detailed study of
both its real and imaginary parts. In addition, the static-limit
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sum rule yields the dielectric constant from the ¢; spectrum.
Experimental values agree with DFT calculations, showing
that €, is essentially bulklike. From a practical perspective,
we provide much needed experimental data on colloidal lead
salt Qdots, useful for optimizing photonic devices. Finally, as
the IMI method can be applied to any suspension for which
the MG model is valid, we present a powerful calculation of
the optical properties of a material from a measurement of
the absorbance spectrum.
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